import numpy as np
from data_prep import features, targets, features_test, targets_test
np.random.seed(21)
def sigmoid(x):
"""
μκ·Έλͺ¨μ΄λ νμ±ν ν¨μ
μ
λ ₯κ°μ 0~1 μ¬μ΄μ κ°μΌλ‘ λ³ν
Parameters:
x: μ
λ ₯ κ°
Returns:
sigmoid ν¨μλ₯Ό μ μ©ν κ²°κ³Ό κ°
"""
return 1 / (1 + np.exp(-x))
n_hidden = 2
epochs = 900
learnrate = 0.005
n_records, n_features = features.shape
last_loss = None
weights_input_hidden = np.random.normal(scale=1 / n_features ** .5,
size=(n_features, n_hidden))
weights_hidden_output = np.random.normal(scale=1 / n_features ** .5,
size=n_hidden)
for e in range(epochs):
del_w_input_hidden = np.zeros(weights_input_hidden.shape)
del_w_hidden_output = np.zeros(weights_hidden_output.shape)
for x, y in zip(features.values, targets):
hidden_input = np.dot(x, weights_input_hidden)
hidden_output = sigmoid(hidden_input)
output = sigmoid(np.dot(hidden_output, weights_hidden_output))
error = y - output
output_error_term = error * output * (1 - output)
hidden_error = np.dot(output_error_term, weights_hidden_output)
hidden_error_term = hidden_error * hidden_output * (1 - hidden_output)
del_w_hidden_output += output_error_term * hidden_output
del_w_input_hidden += hidden_error_term * x[:, None]
weights_input_hidden += learnrate * del_w_input_hidden / n_records
weights_hidden_output += learnrate * del_w_hidden_output / n_records
if e % (epochs / 10) == 0:
hidden_output = sigmoid(np.dot(x, weights_input_hidden))
out = sigmoid(np.dot(hidden_output, weights_hidden_output))
loss = np.mean((out - targets) ** 2)
if last_loss and last_loss < loss:
print("Train loss: ", loss, " WARNING - Loss Increasing")
else:
print("Train loss: ", loss)
last_loss = loss
hidden = sigmoid(np.dot(features_test, weights_input_hidden))
out = sigmoid(np.dot(hidden, weights_hidden_output))
predictions = out > 0.5
accuracy = np.mean(predictions == targets_test)
print("Prediction accuracy: {:.3f}".format(accuracy))